See the Unseen

See the Unseen

The world of thermal imaging and how it applies to today’s modern security solutions

Never before has thermal imaging technology been as widely discussed as it is today. While unfortunate for all of us, COVID-19 has cast light onto various thermal scanning technologies available to help prevent the spread of coronavirus by detecting people who may have elevated body temperatures. And, like the California Gold Rush of 1848, dozens of new players – both manufacturers and distributors – are entering new territory for the first time.

This is not about that mad dash. Instead, let’s take a look at how the technology works, its origins, how the last decade has seen it commercialized for various security applications and where it can be used moving forward.

WARTIME TECHNOLOGY

So, like the Jeep and many other exciting innovations from World War II, modern thermal imaging was developed for military applications. Thermal sensors, and the cooling apparatuses they required, were so large that transporting them required tanks or planes. Technology improvements over the next 50 years made thermal devices easier to transport and less expensive.

Thermal imaging works because infrared radiation (or infrared light) exists everywhere as all objects above absolute zero emit heat signatures. This radiation is invisible to the naked eye and, simply put, thermal imaging cameras detect these light waves, processes them and then displays them as an image. The infrared light waves are captured by the camera, calculated with microbolometers and specific thermographic algorithms and become visible when outputted on a screen. The resolution of the image is dependent on a number of variables but, relative to selecting the correct camera for security needs, one of the key factors is the number of pixels for the image screen.

After previously providing thermal engineering for military and large-scale commercial use, my mission changed to finding more affordable ways to allow the world to “see the unseen”. By building smaller, lighter, high-powered thermal cameras priced for commercial and consumer use, we set out to reveal the world of energy that surrounds us. Doing so means providing highly useful information for solving everyday problems by detecting and visualizing heat.

WIDESPREAD ADOPTION

Until the last decade, the major historic deterrent to the widespread adoption of thermal imaging has been its lack of affordability. Today, however, there are several innovative and worldclass thermal imaging companies capable of manufacturing excellent products for a fraction of historical costs. But, the real value of thermal imaging is found within the data, how that information is used and how the technology’s affordable scalability has revealed so many other uses unimaginable only a few years ago.

For example, the industry has seen tremendous growth in the fire and rescue profession. Imagine being a firefighter and entering a darkened structured full of black smoke.

The human eye cannot see trapped human beings. The eye is completely unable to detect if a floor is about to collapse because the fire has made it structurally unsafe. And, after the fire is presumably extinguished, a firefighter cannot see a hot spot that remains somewhere in the building. But, a small, handheld thermal camera can detect all of this because it doesn’t see anything but heat. It can “see” through black smoke and distinguish the heat signature of flames from that of a human being. It can detect hot spots in the floor that’s ready to collapse or within a remaining wall that continues to smolder.

All of these applications are used by firefighters and manufacturers have found ways to make thermal imaging cameras so affordable that fire departments are finding ways to equip every one of their firefighters with them.

Other previously unforeseen applications can be found in the remote monitoring of electronic equipment. Imagine an elevator control bank within a large office building. Long before mechanical failure occurs and creates a potentially dangerous situation for passengers and repair professionals, the circuitry within the control system can deteriorate. By using thermal sensors and some basic integration, early irregular heat detection of potential circuitry malfunction can alert the elevator service team to contact a building management team before they even know there could be a costly – and potentially dangerous – problem.

APPLICATION MANAGEMENT

For the security management industry, these kinds of application are being identified every day. In fact, let’s examine how thermal imaging systems can be used to help make buildings safer for its occupants during the COVID-19 pandemic. First, it is important to note temperature screening products alone cannot diagnose or exclude diagnosis of COVID-19 or any other disease or condition. However, when used correctly, they are very fast and effective at providing an initial temperature assessment for business and institutions seeking to implement daily health checks as recommended by the CDC.

As an initial front line of defense, thermal imaging systems are an important singular component of a broader strategy to create healthier environments.

When developed to follow FDA guidelines, and when used as designed, thermal scanning products can quickly provide an initial assessment of a person’s body temperature while maintaining social distancing protocols. In an effort to provide safer environments for businesses and other gathering places, thermal imaging can detect elevated temperatures associated with potentially ill people and these systems are not easily spoofed like pyrometer-based kiosk solutions.

This implementation is already evolving, too. Through the use of APIs (Application Programing Interface) available with some thermal scanning systems, integrators can create specific integrated network capabilities using multiple thermal imaging units and temperature screening in one enterprise solution to include entry door access following scans, triggering access control and video management systems, sending pass/fail scan messages and alarm events, and flagging video when a scan occurs.

That is where thermal imaging stands today. While the industry’s focus has shifted this year to addressing public health and safety by helping control the spread of the pandemic, there’s much more in the works for the future. Soon, we’ll all get back to developing new innovations and product concepts for IoT applications, autonomously driven vehicles and exploring more “unseen” possibilities.

This article originally appeared in the November / December 2020 issue of Security Today.

Featured

  • AI to Help Resolve Non-Emergency Calls Across Utah and Decrease 911 Caller Wait Times

    The Utah Communications Authority (UCA), which oversees the state’s next generation 911 technology services, recently announced that public safety answering points (PSAPs) throughout the state plan to implement Motorola Solutions’ Virtual Response technology to automate the receipt and resolution of 10-digit non-emergency line calls in Utah with the help of AI. Read Now

  • Report Reveals Local Governments Face Surge in Ransomware Attacks with Minimal Resources

    KnowBe4, the cybersecurity platform that comprehensively addresses human risk management, recently released new research highlighting the critical cybersecurity challenges facing state, local, tribal, and territorial (SLTT) governments. The report details how government organizations have become prime targets for cybercriminals while simultaneously facing severe resource constraints. Read Now

  • Video Surveillance Trends to Watch

    With more organizations adding newer capabilities to their surveillance systems, it’s always important to remember the “basics” of system configuration and deployment, as well as the topline benefits of continually emerging technologies like AI and the cloud. Read Now

  • New Report Reveals Top Trends Transforming Access Controller Technology

    Mercury Security, a provider in access control hardware and open platform solutions, has published its Trends in Access Controllers Report, based on a survey of over 450 security professionals across North America and Europe. The findings highlight the controller’s vital role in a physical access control system (PACS), where the device not only enforces access policies but also connects with readers to verify user credentials—ranging from ID badges to biometrics and mobile identities. With 72% of respondents identifying the controller as a critical or important factor in PACS design, the report underscores how the choice of controller platform has become a strategic decision for today’s security leaders. Read Now

  • Overwhelming Majority of CISOs Anticipate Surge in Cyber Attacks Over the Next Three Years

    An overwhelming 98% of chief information security officers (CISOs) expect a surge in cyber attacks over the next three years as organizations face an increasingly complex and artificial intelligence (AI)-driven digital threat landscape. This is according to new research conducted among 300 CISOs, chief information officers (CIOs), and senior IT professionals by CSC1, the leading provider of enterprise-class domain and domain name system (DNS) security. Read Now

New Products

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis.

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.