Can Zero Trust Be Trusted

Responding to breaches or new attack techniques by advancing defensive frameworks

Not to be macabre, but cybersecurity frameworks make me think of plane crashes. Airline safety always gets better after an incident because experts analyze what happened and how to make it not happen again. Our industry does the same thing. We respond to breaches or novel new attack techniques by advancing new defensive frameworks to meet the moment.

Zero trust/least privilege is one of the frameworks that has many cyber security professionals justifiably excited. Most of the what you’ll read about applies to networked resources, such as databases or online applications and services. But can it also be applied to secure the millions of contracts, reports, spreadsheets, and other files your users create and manage?

This so-called “unstructured data” is notoriously difficult to protect – so, let’s start by getting a good handle on the framework’s first principles and see what we can use.

ZERO TRUST

It’s no surprise that cyber security defenses took their first cues from the physical world. Castles have moats. Your house has a door with a lock. It makes sense to protect your network with a firewall. But cyber criminals soon crashed that plane. Once they got past the firewall, they feasted on the unprotected targets behind it. Enter zero trust.

The first principle of Zero Trust states there are no safe networks. Access can’t be governed by network locations, IP addresses or machines, but instead by the nature of the asset and the authorization of the user.

Here is another analogy. If you ran a Zero Trust bar, you’d trade your bouncer at the door for a staff of ID checkers, each protecting an “asset,” such as the bar, the stage or seating areas, with different access requirements, such as a minimum age to access the bar or being part of the band to get backstage.

On the network, Zero Trust implementations are built with micro-segmentation (breaking the network down into smaller, resource-defined areas to control/protect), and robust identity and access management (IAM) tools (the blend of authentication, role and context needed to make a go/no go access decision). But we’re going to need a different approach for unstructured data.

LEAST PRIVILEGE

Accounts with overly broad privileges are the source of substantial mischief when compromised or misused by disgruntled insiders. The recent Twitter kerfuffle, for example, happened because a compromised insider account had the authority to modify end-user accounts with few restrictions and no checks and balances. There are plenty of other stories outside of Twitter about admin account abuse. It is a big problem.

The least-privileges first principle says accounts should be able to access only what’s needed and nothing more. Of course, we still need administrative accounts with potentially dangerous permissions – so the goal is containment of the blast radius should something go wrong. Together, least privileges and zero trust deliver a powerful model for protecting specific assets with access based on expertly tailored permissions. Sounds like something you’d want for your unstructured data, right?

APPLYING ZERO TRUST/LEAST PRIVILEGE TO UNSTRUCTURED DATA

Without a doubt, applying these first principles will dramatically improve unstructured data security. But the devil, as they say, is in the details.

Firewalls. Like firewalls for the network before Zero Trust, folders are the most common control points for unstructured data. And just as we now focus on the resource and not the network location, Zero Trust directs our attention to the file, not the folder. That means each file needs to be protected based on its sensitivity – but who’s to say what’s sensitive, and what’s not?

Assets. Traditional Zero Trust focuses on assets that are easy to find and relatively static, such as databases or interfaces to networked applications. Unstructured data, on the other hand, is a different animal. The users who create and use it, aren’t always thinking about where to store and how to secure their files. Files get copied, modified, emailed and linkshared. Unstructured data is wild and wooly, and it doesn’t lend itself to careful construction of micro segments.

Privileges. Modifying your team’s access privileges for those easy-to-find and static resources is also not a big problem. But the least-privilege imperative gets way more complicated when the target resource is an individual file. Is it realistic to ask an IT staffer to figure out access control for a specific legal contract or price list, for example? Probably not. Sound like a tough problem? It is, but don’t despair. Protecting unstructured data is a worthy goal and there are emerging solutions that’ll help us join the zero-trust/least-privilege movement. There are two problems to be solved, and both are unique to unstructured data.

KNOWING WHAT YOU HAVE

“Like we’ve mentioned, traditional zero-trust focuses on resources that are pretty easy to get your arms around.” Unstructured data, on the other hand, is fantastically complex and diverse (see details in this study).

Specialized data, such as a contract or a sales strategy, might be both strategically valuable and difficult for outsiders to understand. To date, pattern matching and end-user file markup techniques have been used to find business-critical data. Neither option is working very well.

KNOWING WHAT TO DO

Developing policies for networked resources, while not easy, is at least manageable. Unstructured data is different. It’s diverse and dynamic, changing with time and business imperatives. Data loss prevention (DLP) technologies take a stab at the unstructured data policy problem, but DLP implementations are highly complex beasts bordering on unmanageable. Knowing what policies to apply to each file is a very tough problem.

ZERO TRUST/LEAST PRIVILEGE WITH DEEP LEARNING

At this point, you might be wondering if there’s any hope for zero-trust/least-privilege approaches. Fortunately, over the last few years deep learning technologies, specifically natural language processing have matured and now offer some exciting new capabilities. The two problems we’ve identified, discovering/ categorizing your data and defining appropriate access policies, are now solvable with automated deep learning solutions.

Deep learning reveals document meaning and context to provide accurate, granular categories that reflect business criticality. These categories are essential for zero trust security solutions. Deep learning, being far more accurate than pattern matching and far easier to implement than end user classification programs, is the answer.

Once categorized, deep learning can establish a security baseline for each category. That baseline encompasses how files are permissioned, shared, stored, and managed, and it reflects the policy decisions made by the people who know those files best, the owners and end users. From here it is an easy step to find and fix at-risk files, automatically and accurately.

Zero Trust/least-privilege security is possible for unstructured data. By categorizing data and discovering the most appropriate security policies for each file, we’ve kicked away the barriers to effective, efficient and focused security at the file level. We’re finally ready to apply one of the decade’s most powerful security frameworks to the millions of files and documents our users create and manage every day.

This article originally appeared in the November / December 2020 issue of Security Today.

Featured

  • Maximizing Your Security Budget This Year

    Perimeter Security Standards for Multi-Site Businesses

    When you run or own a business that has multiple locations, it is important to set clear perimeter security standards. By doing this, it allows you to assess and mitigate any potential threats or risks at each site or location efficiently and effectively. Read Now

  • New Research Shows a Continuing Increase in Ransomware Victims

    GuidePoint Security recently announced the release of GuidePoint Research and Intelligence Team’s (GRIT) Q1 2024 Ransomware Report. In addition to revealing a nearly 20% year-over-year increase in the number of ransomware victims, the GRIT Q1 2024 Ransomware Report observes major shifts in the behavioral patterns of ransomware groups following law enforcement activity – including the continued targeting of previously “off-limits” organizations and industries, such as emergency hospitals. Read Now

  • OpenAI's GPT-4 Is Capable of Autonomously Exploiting Zero-Day Vulnerabilities

    According to a new study from four computer scientists at the University of Illinois Urbana-Champaign, OpenAI’s paid chatbot, GPT-4, is capable of autonomously exploiting zero-day vulnerabilities without any human assistance. Read Now

  • Getting in Someone’s Face

    There was a time, not so long ago, when the tradeshow industry must have thought COVID-19 might wipe out face-to-face meetings. It sure seemed that way about three years ago. Read Now

    • Industry Events
    • ISC West

Featured Cybersecurity

Webinars

New Products

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings. 3

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols. 3